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Abstract

The verification of a local minimizer of a general (i.e., nonconvex) quadratic
program is in general an NP-hard problem. The difficulty concerns the op-
timality of certain points (which we call dead points) at which the first-order
necessary conditions for optimality are satisfied, but strict complementarity
does not hold.

One important class of methods for solving general quadratic prcgrammirg
problems are called inertia-controlling quadratic programming (ICQP) meth-
ods. We derive a computational scheme for proceeding at a dead point that is
appropridte for a general ICQP method.

Keywords: Quadratic programming, local minimizer, NP-hardness.

1. Introduction

The general quadratic programming problem is to find a local minimizer of a quad-
ratic function subject to linear constraints. In this paper, the pr'rblem considered
is of the form

minimize V(x) - cT xTt x (1.1

subject to Ax > fi,
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Science Foundation Grant CCR-8413211; and the Office of Naval Research Contract N00014-87-K-
0142.



Local Ainzinzzers in ICQPs

where the IHttsian matrilx 11 is symmetric, and A is an nmj x ni matrix. Of particular
interest is the nonconvex case where H has an arbitrary distribution of positive,
negative and zero eigenvldues.

Our attention will focus on the class of inertia-controlling methods for general
quadratic programming. Inertia-controlling quadratic programming (ICQP) meth-
ods use a linearly independent subset of the constraints known as the working st
to define a search direction and multiplier estimates. A unique feature of ICQP
methods is that constraint deletions are restricted so as to control the inertia of
the reduccd Hessian, which is never permitted to have more than one nonpositive
eigenvalue. Fletcher [Fle7l) proposed the first ICQP method, and various methods
within this class have also been proposed, see for example Gill at al. [GMSW84] and
Gould [GouS6].

For any nonconvex quadratic program there may exist certain dead points at
which all quadratic programming methods will find it difficult to proceed (see Sec-
tion 2.6, for a precise definition of a dead point). The difficulty arises because ti,e

verification of such a point as a local minimizer of (1.1) is an NP-hard problem-
see %rMurthy and Kabadi [MK87] and Pardalos arid Schnitger [PS88]. U,,fGrtunately.

even if lower values of (: do exist in the neighborhood of a dead point, any number of
constraints may need to be deleted simultaneously in order to compute a direction
of improvement. Since existing ICQP methods can delete only one constraint at a
time, they may be unable to proceed from a dead point.

The difficulties associated with existing ICQP methods at a dead point may be
contrasted with the difficulties associated with the simplex method at a degenerate

vertex. The simplex method is able to kee l iterating at a degenerate vertex, but it
may be necessary to perform a (possibly infinite) number of iterations during which
the working set changes, but the vertex remains the same. By contrast, existing
ICQP methods may terminate prematurely at a dead point which is not a local
minimizer.

If progress is to be made at a dead point, a scheme must be devised for the iden-
tification and simultaneous deletion of more than one -,- -aint from the working
set. The computational and theoretical properties of 1:-'h scheme are presented
in this paper. In Section 6 we show that at a dead pc. the proposed method
behaves in a similar way to the simplex at a degenerate vertex--i.e., the algorithm
is able to proceed, but there exists the danger of cycling. In order to guarantee

finite termination, it is necessary to introduce procedures (such as a lexicographic
ordering) similar to the anti-cycling procedures used in the simplex method.

In an ICQP method, the reduced hlessian is required to be positive definite at the

starting point. In order to ensure this, it might be necessary to introduce artificial

constraints. (The importance of such constraints is explained in Section 2.5.) Un-
S Vy the presence of these constraints may introduce additional dead points

which are not present in tho original problem. However, we show that the coin-

putationa-l scheme derived is able to treat L.hv artifirial-constraint case so that the
artificial constraints cause no additional difficulties.

In order to describe the new scheme, we first review results on necessary and
smifficient conditions for optimality in general quadratic programming. For a discus-
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sion of these conditions, see for example Majthay [Maj7l], Mangasarian [Man80],
Contesse [Con80] or Borwein [Bor82I. The results presented here allow the presence
of artificial constraints in the working set.

2. Basics

2.1. Notation

The following notation will be used throughout the paper:

The vector x denotes a feasible point of (1.1) to be examined.

The matrix A denotes the working-set matrix at x, and b denotes the associated
right-hand side vector.

The scalar m denotes the number of rows in A.

The matrix Z denotes a matrix whose columns form a basis for the nullspace of A;
the reduced gradient and reduced Hessian of V with respect to A are then ZTg(x)

and ZTHZ.

The vector g denotes the gradient of (p at x, i.e., g = Hx + c.

2.2. Terminology

The following terminology will be used:

descent direction if gTp < 0.
direction of positive curvature if pTHp > 0.

A vector p is said to be a direction of negative curvature if pTHp < 0.
direction of zero curvature if pTRp = O.

feasible direction if Ap > 0.

A matrix D is said to be copositive if vTDv > 0 for all v > 0.

active at x if aTx = .
A constraint ari > /h is said to be inactive at x if aTx > 0i.

violated at x if aTx < /3i.

2.3. Assumptions 'sslon For

The following assumptions are made:

Al. The objective function, p, is bounded from below in the feasible region. :

A2. All constraints active at x are in the working set.

A3. The. wor] ihg-set fiatrx A- ias fii row rank. .'.. -

'D ta t  .

m m I



4 Local Minimizers in !CQPs

A4. The point x satisfies the first-order necessary conditions for optimality, i.e.,
there exists a nonnegative Lagrange multiplier vector p such that x and p
satisfy the Karush-Kuhn-Tucker equations

A5. The reduced Hessian, ZTHZ, is positive definite.

2.4. The inertia of a matrix

Let Al be any symmetric matrix. We denote by ip(M), i,,(M) and i,(M) respectively
the (nonnegative) numbers of positive, negative and zero eigenvalues of Al. The
inertia of M-denoted by In(M)-is the associated integer triple (ip, i,, i,). The
following lemma states an important relationship between the inertia of the KKT-
matrix

HA T)

and the reduced Hessian.

Lemma 2.1. Given assumptions A3 and A5, the inertia of the KKT matrix K is
(n,m,O).

Proof. See Gould (Gou85, Lemma 3.4J. i

Lemma 2.1 implies that K is nonsingular, so that the Lagrange multipliers in

(2.1) are unique.

2.5. Inertia-controlling methods for quadratic programming

Associated with each iteration of an ICQP method is a linearly independent subset
of the constraints known as the working set. The working set at the initial point x 0

must be chosen so that the reduced Hessian is positive definite. Thereafter, working
set changes by only one constraint at each iteration and the reduced Hessian is never
permitted to have more than one nonpositive eigenvalue.

ICQP methods depend critically on a procedure for finding an initial working
set with an associated positive-definite reduced Hessian. In order to ensure that
the reduced IHessian is positive definite, the initial working set may need to include
"artificial" constraints that are not specified in the original problem. The only re-

quirement for an artificial constraint is linear independence from constraints already
in the working set. Artificial constraints do not restrict the feasible region, since the
direction of the inequality need not be defined. As soon as an artificial coibtraint
can be removed from the working set, it is eliminated from the problem. The strat-
egy for choosing artificial constraints depends on the mechanics of the particular QP
method and procedures for finding the initial working set are usually dependent on
the method used to solve the KKT system. A simple example of a problem requiring
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artificial constraints is given in Section 5. We emphasize that artificial constraints
.ri itot part of the original problem, but are an artefact of the solution iiethod.
I lie original constraints of the problem are referred Lo as regular constraints.

Once a constrained minimizer is found, an ICQP algorithm proceeds by deleting
,ri constraint from the working set and finding either a feasible descent direction
(, a feasible direction of negative curvature. The constraint deletion is perinitted
,)ilV if the reduced lessian is positive definite.

All ICQP methods generate search vectors and multipliers that satisfy the KKT
equatioiis. However, the equations may be solved either implicitly or explicitly, in
which case one iCQF algorithm may appear to be v-ry different from another. In
Ihis paper, only the form of equations to be solved is stated. i'or a discussion on
the relationship between different ICQP methods, see Gill et al. [GMSW88].

I)ead points with only reg. lar constraints will be treated first. In Section 5. we
,Msirler the case when artificial constraints are present.

2.6. Dead points

It A contains only regular constraints, a dead point is defined to be a point satisfying
1. rMlrptions A4 and A5 for which one or more components of the Lagrange multiplier
vctor ,ti are zero. We emphasize that such a point may not be a local minimizer.

Since a dead point satisfies the first-order necessary conditions for optimalit,
there exists no feasible descent direction. Therefore, it is necessary to find a feasible
direction of negative curvature if an ICQP method is to proceed to find a local
riniriimizer. Unfortunately, it may be impossible to compute a feasible direction of
iregati'' curvature by deleting only one constraint at a time, as can be seen froi
tire following problem.

minimize -XIX 2xER
2

subject to 0 < x, < 1 (2.2)

0 _< X2 < 1.

If the starting point is the origin, and both active constraints are in the working
-e,. assumptions A I-A5 are satisfied. However, if either of the constraints is deleted
Sirn lhe working set, the resulting reduced Hessian is positive semidefinite and
-irgriiar. Therefore, no feasible direction of negative curvature may be computed by
dIlting only one constraint. No more than one constraint may be deleted from the
working set, since constraint deletion is permitted only when the reduced Hessian is

positive definite. Therefore, an ICQP method must terminate at this point, although
Ilie origin is not a local minimizer for the QP.

In this situation-where neither a feasible descent direction nor a feasible di-
rection of negative curvature may be found by deleting only one constraint-it is
necessary to develop a scheme for deleting more than one constraint simultaneously
if ain ICQP method is to proceed.
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2.7. Optimality conditions

In this section, necessary and sufficient conditions for x to be a local minimizer
under assumptions AI-A5 are reviewed. It will be useful to distinguish between
constraints with positive and zero multipliers. Without loss of generality we may
assume that the rows of A are ordered such that

A A+ JA0

where A+ corresponds to rows with positive Lagrange multipliers and A0 corresponds
to rows with zero Lagrange multipliers. Let m+ denote the number of rows in
A+, and let m0 denote the number of rows in A0. Also, let /1+ denote the vector
containing the m+ positive components of it.

The following two necessary and sufficient conditions for x being a local mini-
mizer for (1.1) when assumption A2 holds are given by Majthay [Maj7l] and Con-
tesse [Con80].

C1. The point x satisfies the first-order necessary conditions for optirnality, i.e.,
there exists a nonnegative Lagrange multiplier vector i, such that x and iL
satisfy the KKT equations

(H AT 
_A 0 -x b

C2. It holds that dTIfd > 0 for all d such that A+d = 0 and Aod > 0.

In his proof, Contesse derives an alternative formulation of Condition C2 involv-
ing the set of generators for the finite cone

{p IA+p = O, Aop > 01.

This formulation is described in Theorem 3.1 below. For the sake of completeness,
Contesse's proof is reviewed with a notation relevant to our assumptions.

3. A Proof of the Optimality Conditions

Let Y denote the m+ x n matrix whose j-th column y+j is defined to be the unique
vector satisfying the equation

( I AT AT y+j  (3( 0

A+ 0 0 -pj = e , (3.1)
A0  0 0 -1i 0

and let Yo denote the m. x n matrix whose j-th column y~j is defined to be the
unique vector such that

(A 0 0)( A )=( ); (3.2)
A0 0 0 -Oj ej
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Equations (3.1) and (3.2) imply that the computation of y~j and y0, involves
solving the KKT equations with a unit right-hand side. For a detailed discussion of
the properties of the KKT equations in this context, see Gould [Gou86, Theorem
2.3].

Given Y, and Y, let Ml denote the n x n matrix M ( Z Y+ 0

Lemma 3.1. The 7fatriZ Al is nonsingular.

Proof. It is enough to show that the columns of M are linearly independent. Assume
that

-I = Zvz + Y+ v+ + YOv 0 = 0.

Successive premultiplication of Mv by A+ and A0 gives v+ 0 and v0 = 0. Since
the columns of Z are independent, it follows that Vz = 0. 0

Lemma 3.2. The sets

{p I Ap > 0} and {p I p = Zvz + Y+v+ + Yovo, v, 0 0, v0 > 01

are identical.

Proof. We may write p in the form p - Zv, + Y+v+ + Yv 0 , where v+ and v0 are
nonnegative vectors. Premultiplication of p by A yields

Ap = A+ P vo >- 0 "
= :) P V+ " ) : ( 0

From Lemma 3.1 it follows that the columns of Z, Y+ and 1' span R". However, if
any component of v+ or v,, is negative, the vector Ap will have at least one negative

component. I

Verification of the optimality of x is now equivalent to finding a local solution
of the quadratic program

minimize gTp + pTHpPE n (3.3)

subject to Ap ? 0.

Lemma 3.3. The vector x is a local minimizer of (1.1) if and only if zero is a local
ininimizer of (3.3).

Proof. The Taylor-series expansion of p gives gTp+ -pTjp = ,p(x + p) - p(x). The
vector Ap is nonnegative if and only if A(x + p) > Ax. Since every active constraint
is included in A, the point x will not be a local minimizer of (1.1) if and only if
there exists an infinite sequence {fx} = converging to x such that AXk > b and
cp(Xk) < p(X). We need consider only those constraints in the working set because
assumption A2 guarantees that if {xk}'' 1 converges to x, all other constraints will
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be satisfied for k sufficieiitly large Sirnilarly, the zero vector will not be a local
nininlizer of (3.3) if and on ly if there exists aii iiifinite sequence { k)-})__ converging
to zero such that Ap > 0 and qrp + 1 kTIIpk < 0. The proof is complete if we let

k kX ~X+I) P

Lemma 3.4. All (IcrriCts of the mat riccs ZTIIY+ and ZT1)o ayr Zero.

Proof. Direct substitution in (3. 1) yields ZTII9+y 0 for j 1. 7+ and <dir'ct
substitution in (3.2) vi,,ld Z 7lty 0 forj 1.... *

Lemmas 3.3 and 3.1 are now combined to show that the verification of x as a
local minimizer is achieved by solving the QP problem

illnliiz 11 1+ r Z 7 r, + , IIrI+ u,+ +L'+)' + I/Yin z e + + + Z II~ ' + " '

subjct to + > 0. 1'> > 0.
(3.1)

Lemma 3.5. h( cctor x is a local minimizer of (1.1) if and only if Z( .) i,( a local
lmiiZ(r of (3.4).

Proof. Probleni (3.A) is derived from problem (3.3) by using the transformation

1) M = Zvz + Y+v+ + YoV 0.

Assumption Al. equations (3.1) and (3.2), and Lemma 3.4 are used to simplify the
objective function. The feasible region is obtained by using Lenina 3.2. Finally.
Lemma 3.3 implies that -ero is a local minimizer of (1.1) if and only if it is a local
minimizer of (3.4). I

Using these results it is possible to pose the problem of determining local opti-
mality as a copositivity problem, as the following theorem shows.

Theorem 3.1. (Contesse [Con80]) The point x is a local iniimizer of (1.1) if
and only if yTI[ 'r is copositive.

Proof. Assume that 1 oTgly 0 is not copositive. T'en there exists a nonnegative
vector v0 such that T,1 1 ,0J !l 0 c0 is negative and zero is not a local minimizer of (3.1).
Lemma 3.5 implies that x is not a local minimizer of (1.1).

Assume that yTI Y is copositive. If zero is not a local minimizer of (3.4), there
must exist an infinite sequence f k= converging to zero such that

T+k + 2ikZIZVk + _LrkTyT k v kTT k + vYkT.HT . k
j1V ZZ 2 + + + + + + 00 2 000HVv,0 ,

where vk and vk are nonnegative. Since ZTHZ is positive definite and YTIIyo is
copositive, it must hold that

T + Y Vk +V+ , <0
I+v + v+ HY+/ + + oHVo O.
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At least one component of v+ must be positive, since the left-hand side is zero when
+ is zero. Since /t+ is a positive vector, it must have a positive least component

Pini n . and we may write

11nneT1,k + lVkTIT ... k kTY"rJlYov1 k < O,
piet+ 2 t+ + HnY+v+ + v+ Y .

where e is a suitably dimensioned vector with unit components. If both sides of this
last equation are divided by the positive quantity eTt,k, we obtain the inequality

V kTiT r. k kTyT .. k

1in - + + + -v + nrV < 0. (3.5)
I 2lflill + +.y I+ + +eC Ttvk V+ + '

If we now consider this inequality as k goes to infinity, we note that jimin must be
nonpositive, which contradicts the assumptioij that It, is a positive vector. Hence,
the zero vector is a local minimizer of (3.4) and Lemma 3.5 implies that x is a local
minimizer of (1.1). 1

From this theorem, it follows that if we are able to check the 7n0 x 7 0 matrix
yoTflY for copositivity, we are able to determine if x is a local minimizer.

4. On the Copositivity of a Matrix

It was shown in the previous section that the verification of optimality of a dead
point x is equivalent to checking if the m0 x m0 matrix y0Tttyo is copositive. Once
Y, is computed, the matrix y.Ttl.o may be calculated by performing direct matrix
multiplications. However, the following lemma shows that the m 0 solutions of the
equation (3.2) for j = 1. no provide the matrix Y THY .

Lemma 4.1. If Oj satisfics (3.2), then yTIoe, Oj for j 1, ... , in.

Proof. Direct substitution in (3.2) yields yoty 0 = e~9,. I

Copositive matrices have been studied extensively (see, e.g., Cottle et al. [CHL70]
and Pereira [Per72]). The problem of deciding if a given matrix is copositive has beeit
shown to be NP-hard, see Murty an( Kabadi [MK87] and Pardalos and Schnitger
[PS88]. Therefore, no computationally tractable method for solving the general
problem is known.

However, there are special situations in which a matrix may be simply checked
for coposicvity. Two such situations are discussed in the following lemmas.

Lemma 4.2. If the elcmet.s of the matrix 1,T11 1' are nonnCgative, it is COpoSitiVc.

Proof. If ITHYl is not copositive, there must exist a nonnegative vector v0 such

that vo'i 'TH'vo < 0. This is clearly impossible if all elements of y0Ttt,'o are nom-
negative. I
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Lemma~~~~~~~~ 4.3 If aiaoaclmnofyTI, say y0
1flly0 ,i is negative, the 7natrixr is

Flot (copo-)Siti1'( .11011 Oa Cr, the vector y,)i is a feasible (direction of negative curvature.

Proof. If y"'II y0, < 0, then clearly Yoi is a direction of negativi, curvature. Lemma
3.2 implies that y0, is at feasible direction, as required.

it is also straightforward to check for copositivity when 0~j is' a 2 x 2 matrix
with inonnegative dIiagonal elements.

Lem-ma 4.4. A 2 x 2 real ,syinnictrIC Matrvix with nonnegative diagonal elemnents is
lot copositit-( if and only if its determinant is negative and its off-diagonal elements

iicgneat ive. 1~for()r r, if the ma rix is not copositive, the cigecnzvector corresponding
to th(i lugYat icC eiq nca/nc is a Positive vector.

Proof. Sev Cot tie 0t at. [('11,70, Theorem 3.1j. 1

As a consequnence of Lemmna -.A the following lemima is immediate.

Lemma4.5. ssumethat YTy has nonnegative diagonal elemeints. Moreover.
aoswnum that it has a 2 x 2 principal submatrix with negative determ~inant and ne~g-

o(It ofaf-diagonal elements. A4 feasible direction of negative curvature for 1,;Tj1,, is
qireni by the ni-r'ector uliose nonzero elements are the components of the cigentvetol'
cotrespondingy to the negative eigen value of the 2 x 2 principal subrizatrix.

Proof. It follows from Lemmna 4.4 that it is possible to choose the eigenvector
correspondling to thle negative eigenvalue of this principal 2 x 2 submatrix with both
complonents nonnegative. Ilence, this eigenvector extended by zeros in the remaining
in, - 2) positions is a feasible direction of negative curvature. I

Now we prCopose a scheme for the verification of local optimality based on the
'mnas above. First, it Is shown that artificial constraints cause no additional

difficultioes.

.5. Artificial Constraints in the Working Set

Front tht. earlier dliscu~ssion, it is clear that there may exist certain dead poinlts
at which the verification of local optimality is very difficult. In this section we
denionst rate that this inherent difficulty need not b, exacerbated by the imposition
of artificial constraints.

To simplify the discussion, it will be necessary to distinguish between artificial
anid rvgular conist raints. Accordingly, we partition A0 andl Y0 such that

ti~ (~ ) and Y0  Y ) I~

whorv he subscript "tl? denotes regular constraints and the subscript "A4" denotes

artificial conist raints. Let rri denote the number of rows of A, and let r 4A de~note
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the number of rows of A,. Also let yRj denote the j-th column of YR and let yAj
denote the j-th colunn of YA, When artificial constraints are present, the definition
of a feasible direction will be changed as follows:

A vector p is said to be a fcasible direction if A~p >_ 0 and ARp >_ 0.

Note that the sign of the vector AAp is not restricted.
It is also necessary to use a slightly modified version of assumption 4:

A4'. The point x satisfies the first-order necessary conditions for optimality, i.e.,
there exists a Lagrange multiplier vector = ( 14 IA PR ) , with )u > 0,
PR > 0 and PA 0, such that x and ji satisfy the KKT equations

*+ R I Ac
A-+ 0 0 0 -11+ b+

o- 0 0 0 -1R b,
, 0 0 0 -PA bA

The difference between assumptions A4 and A4' is that the Lagrange multipliers
of the artificial constraints are required to be zero. If an artificial constraint has
a nonzero multiplier, it could be deleted from the working set to yield a feasible
descent direction. Therefore, assumption A4' is appropriate for x being a constrained
stationary point. Consequently, a point x is said to be a dead point if it satisfies
assumptions A4' and A5.

Unfortunately, additional dead points may be added to the problem by imposing
artificial constraints. Consider the problem

minimize -X 1 X 2

.rER
2

subject to -1 < x < 1 (5.1)

-l _< X2  I .

If the ,tarting point is the origin, no regular constraints are active and artificial
constraints are needed to obtain a positive-definite reduced Hessian. If artificial
bound con. ints ,j = 0 and x 2 = 0 are imposed, assumptions A : k 3, A.4' and
A5 are , .,. , d. However, as in problem (2.2), the origin is not a local mnfimizer
and no f, -- ,e direction of negative curvature may be obtained by deleting only
one artiacia! '.,w id.

It r ,ght s,, in necessary that an arbitrary (unknown) number of artificial con-
straints ,.wst be deleted to give a feasible direction of negative curvature (if one
"Xists). lowever, we shall show below that such a direction may be computed by
making only one or two artificial constraints leave the working set.

In order to show this, we determine constraints in the working set that may be
deleted yielding a positive-definite reduced Hessian. This may be determined from
the solution of (3.1) and (3.2), as observed by Gould [Gou86, Theorem 2.3] and
reviewed in the following lemma.
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Lemma 5.1. If a constraint corresponding to a positive diagonal element of OyTy

is deletcd from A, the rcsultinq mrduced Hessian remains positive definite.

Proof. Let yoi correspond to the deleted constraint ax :> 3,. Lemma 3.1 implies
that yei is independent of the columns of Z and it follows from (3.2) that Ayoi = e,.
Therefore, a basis for the new nullspace is obtained by adding the column y0, to
Z. Lemma 3.4 implies that ZTIyoi is zero. Hence, the fact that YTHy0!o is positive
implies that the new reduced Hessian remains positive definite. I

In order to distinguish between artificial and regular constraints we partition
Tl0HY such that

0 0,T y

A HYR AHYA A

It follows from Lemma 4.3 that if a d:agonal element of Yf fllY is negative.
a feasible direction of negative curvature can be computed. By Lemma 5.1 it fol-
lows that if a diagonal element of 1

AII
1

A is positive, the corresponding artificial
constraint can be deleted and the new reduced Hessian will be positive definite.
Clearly, unless all diagonal elements of YtHY are zero, either a feasible direction
of negative curvature can be computed or an artificial constraint can be deleted.
Lemma 5.2. If two diagonal elements of YATIIYa, say YTl1YAi and yT f1yA ar

zero, and y Tl YAJ is nonzero, the point X is not a local minimizer. Moreover, either

YAi - YAJ or YAi + YAJ is a feasible direction of negative curvature.

Proof. Direct calculation yields (YAI + YA. )TtI(YA1 + Y/A)) = -(Y.i - Yaj.)TII(YAI -

YAj) = 2yTi 1YYA) $ 0. Hence, either YAI + YAJ or YAi - YAj is a direction of negative
curvature. Feasibility follows from the relations A+(YAi ± YAI) = 0 and AR(YAi ±

/Aj) = 0. 1

This lemma demonstrates that unless the matrix YTHYa is zero, either a feasible
direction of negative curvature can be computed or an artificial constraint can be
deleted.

Lemma 5.3. If the diagonals of YT T1YA are zero, and an element of Y TIIYA (say

YRtYYAJ) is -ionzero, the point x is not a local minimizer and a feasible direction of
negative curvature may be computed.

Proof. Let p be a vector of the form a 1yRi + otJYA). Direct calculation yields that
p is feasible if at is nonnegative. The quantity pTlIp may be expressed as

pTp ( ) ( •RS H YR A)

T0 a

Consider the 2 x 2 matrix T given by

T ~1 YT yYAj)T ( YARIlY) 0iT = yyAj 0 "
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Since YT Hyj is nonzero, T has one negative and one positive eigenvalue. It has
or'hogona! eigenvectors, since it is a real symmetric matrix. Hence, ai and a, may
be chosen so that p is the eigenvector corresponding to the negative eigemalue,
with ai nonnegative. For those values of ai and aj, the vector p will be a feasible
direction of negative curvature. I

Clearly, whenever a component of jTHY is nonzero, either an artificial con-
straint can be deleted or a feasible direction of negative curvature can be computed.
To summarize, the following result holds when artificial constraints are present in
the working set.

Theorem 5.1. If Yf fll 4 I has nonpositive diagonal elements, then x is a local min-
niizer of (1. 1) if and only if Y I HYR is copositive and YT HY and yTHYA are zero.

Proof. If ITHY or 'TIIYa are nonzero, there exists a feasible direction of negative
curvature and x cannot be a local minimizer.

Assume that 1,Tt"y, is not copositive. In this case, a feasible direction of
negative curvature may be computed and the local optimality of x is contradicted.

Assume that Y.THYR is copositive and Y IHYa and yT H Ya are zero. Using a

similar analysis to that for the regular-constraint case, we can make the following
assertions. As in Lemma 3.2, partition the vector v0 such that

VR(O VA /

and replac? the constraint v0 > 0 in (3.4) by VR > 0. If x is not a local minimizer of
(1.1) there must exist an infinite sequence {v}kolo converging to zero such that

1 T k 1 1 kTITHyAVk < O.I'min "+t 2eTvk /) VkTYT "+ + + eTT--"+ I/IRv +r V~o '+ + fl 4 V+<0

+e~ v 4']Il + eTvk V+ + jV~k V

Again, if we consider this iiiequdity as k goes to infinity, we obtain the required
contradiction. I

Ccnsequently, if assumptions AI-A3, A4' and A5 hold, the artificial constraints
will cause no extra problem in determining if x is a local minimizer. There remains
the hard question of verifying that the matrix yRTHyR is copositive.

6. Computation of Directions of Negative Curvature

In this section, we propose an extension to ICQP methods that will allow progress to
he made at a dead point. Algorithm 6.1 provides a means of computing a direction
of negative curvature by making one or two active constraints inactive. Lemma 6.1
below indicates that the algorithm will terminate with either a direction of negative
curvature or the conclusion that x is a local minimizer.
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Lemma 6.1. Algorithm 6.1 will terminate in at most m steps. Moreover, if ter-
mination occurs without the computation of a direction of negative curvature, x is
a local minimizer of (1.1).

Proof. At each step, either the algorithm terminates or a constraint is deleted from
the working set. Since there are only m. constraints to delete, the algorithm must
stop in at most m0 steps.

If y'TjHYA has a positive diagonal element, the corresponding artificial constraint
is deleted. Since this deletion will be repeated until every diagonal element of
ITHY is nonpositive, we may assume that yTIYA has nonpositive diagonal ele-

ments. At this point, if no direction of negative curvature is computed, the matricesR an , 1,T 111,
1,THYA and YHA will be zero at each subsequent step of the algorithm. Either
the algorithm detects that the matrix ,TIITyR is copositive, or a constraint cor-

responding to a positive diagional element of YTHY is deleted. If the algorithm
terminates without having computed a direction of negative curvature, the algo-
rithm has determined that a local minimizer has been found witi respect to the
constraints that are still present in AR. However, this conclusion still holds if the
deleted constraints are added again, since deletion of constraints may only increase
the size of the feasible region. |

Hence, if Algorithm 6.1 does not terminate at a given step, a constraint with a
positive diagonal element of yTfHY, is deleted. Recall that Lemma 5.1 implies that
the new reduced Hessian is positive definite whenever a constraint corresponding to
a positive element of yTtjy is deleted.

The amount of work needed at each step may be reduced by updating Y, and
yTfY To show this, we assume that the normal of the constraint aTx > di is
deleted from A. corresponding to a positive diagonal element of YTI I Y. Partition

A, such that

= a 7)

In order to state the results in compact form, let A denote the matrix whose j-th
column is Aj in (3.2) and let 9 denote the matrix whose j-th column equals 0,.
With this partition of Ao, let the induced partition of Y., A and 0 be given by

Y.=~ 0 Y. y A=(A, Ai) and 0= Oil Oil

With this partition equation (3.2) may be written in compact form as

H AT AT a Y.oI Yoi 0 0

A+ 0 0 0 1  -A, -Ai 0 0  (6.1)

A.1 0 0 0 -O1, -oi 1 0
aT  0 0 0 -l 0

....... ~~ ~ ~ ~ el -9i 0 ,,1nmi nm imn gin
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Algorithm 6.1. An algorithm for finding a dircction of negative curvaturc

repeat
Compute yTj 1 Y; Initialize 711A and mR;

if (iA > 0) then
k - argument satisfying mnax i yTll

if (y7kl[Yak > 0) then
Delete artificial constraint k; go to again; (see Lemma 5.1)

end if;
k - argument satisfying min, yTAI;

ifA(kIyAk < 0) then
P - YAk; ,o to exit; (see Lemma 4.3)

end if-
k,I - arguments satisfying maxi,j IyAI'YJ1;

if (Y74'kIlYAt - 0) then

P - YAk ± YAI; go to exit; (see Lemma 5.2)
else if (m, > 0) then

k, I - arguments satisfying maxi,j lyA'H:yRj;
if (YT 1ynI y0) then

Compute p; go to exit; (see Lemma 5.3)
end if;

end if;
end if;
if (m, = 0) or (minij y~i~ y > 0) then

x is a local minimizer; go to exit; (see Lemma 4.2)
end if;
k - argument sat;sfying mini yT Hy Ri;

if (YTkH yRk < 0) then

P +'- YRk; go to exit; (see Lemma 4.3)
end if;
for i - 1 to mR do

for j - i + to m, do
negdet ,- (yHyRt ykHYRj -yRiHYRj 2 < 0);
if (neydet) and (yT HYRJ < 0) then

Compute p; go to exit; (see Lemma 4.5)
else if (mR =2) then

x is a local minimizer; go to exit; (see Lemma 4.4)
end if;

end do;
end do;
k -- argument satisfying maxi yTIHYRi;

Delete regular constraint k; (see Lemma 5.1)
label again:

until exit occurs;
label exit:
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Let V0, A and 0 denote the solution of (3.2) in the next step of Algorithm 6.1.
Then, Y, A and 0 will satisfy the equation(HI AT A

+ 
01A+ 0 0 -'

A, 1  0 0

Lemma 6.2. fhe quantities 0 and fo may be obtained from the solution of (6.1)

as
OiO and Y, = Y,) I

Oii Oii

Proof. The matrices 0 and Y0 satisfy the equation

( TI A a Y ( 0
A+ 0 0 0 A 0 (6.2)

A,, 0 0 0 -O 1

aT o 0 0 o

Equations (6.1) and (6.2) imply that the barred quantities may be obtained from

the equations

fo = Yo, + yoiaTfo (6.3a)

A = A1 + A;aTYo (6.3b)

0 = 011 + OilaTYo (6.3c)
0 =Oli + OiiaTVo•  (6.3d)

It follows from Lemma 4.1 that 0 = YTHY. Hence, 0 is a symmetric matrix
with (91i = 9T . Equation (6.3d) implies that OT + O9,aTy0 = 0. The fact that
aTx > 13i is associated with a positive diagonal element of YoTHY implies that O;; is
positive. Substitution in (6.3a) and (6.3c) yields the desired result. I

Hence, only a rank-one modification of Y, and YoTHYo is needed at each step of
Algorithm 6.1.

Lemma 6.3. Assume that y IHyoj is zero and yZ Hyoi is positive at one step of

Algorithm 6.1. Also assume that the constraint with normal ATei is deleted at this
step. At the next step, the column of YTHY o corresponding to the constraint with
normal ATe, is modified only by deletion of the zero element yZHyoj.

Proof. Lemma 6.2 implies that the rank-one modification of column j is zero when
yTHy,, is zero. I

Lemma 6.4. If, in one step of Algorithm 6.1, it holds that the matrices YT HYA
and yTHyA are zero, then they will remain zero.
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Proof. Since both the matrices yTtYA and YIHY are zero, the only way the
algorithm does not terminate is when a regular constraint corresponding to a posi-
tive diagonal element of YTHY R is deleted. Lemma 6.3 implies that the matrices
1RTIIYA and YfH 4. will remain zero. Only one column of zeros from yTtYA is
(leleted at each step. 1

Hence, once tie matrices yTHYA and yTYA are zero, they remain zero.

Lemma 6.5. II TI iYR is positive semidefinite and yIT 11YA and yTHY are zero,
then Algorithn 6. 1 will rcsolvc that x is a local minimizer in at most mR steps.

Proof. Lemma 6.4 implies that the matrices yTA and yT"a will remain zero

until the algorithm terminates. Hence, the only iteration when the algorithm does
not halt is when regular constraints corresponding to positive diagonal elements of
y1THY are deleted. Therefore, at most ntR steps may be taken in the algorithm.

R Ri

Assume that the algorithm terminates without determining that x is a local min-
imizer. It fellows that a directio, of negative curvature must have been computed.
But Lemma 6.2 implies that the matrix 0 of the next step is obtained as

0 = 01, Oil 1

Sylvester's law of inertia implies that In(&) = In(O) - In(Oii). At the initial
iteration, 0 is positive semidefinite. The value of the scalar Oii is positive. Hence,
(9 will have no negative eigenvalues. It follows by induction that no direction of

negative curvature can be computed. I

Hence, if yTIyR is positive semidefinite, Algorithm 6.1 determines that x is a
local minimizer.

7. Changes in the Working Set

In this section the changes in the working set are described. In the proposed algo-
rithm, either one or two constraints in A will become inactive. In an ICQP method,
only one constraint is added or deleted at a time. However, we shall give a scheme
that allows deletion of two constraints at a dead point, maintaining the properties
of an ICQP method, i.e., the reduced Hessian having at most none nonpositive
eigenva!ue and the working-set matrix having full row rank.

When a direction of negative curvature, p, is computed, the objective function
is strictly decreasing along that direction. The boundedness of p in the feasible
region guarantees that a sufficiently large step along p will violate a constraint. Let
ak denote the normal of the first constraint that is violated. In order to determine
how to update A, it is necessary to know if ak is dependent on the rows of A. The
following lemma, given by Gill et al. [GMSW88], shows how linear independence
may be checked.
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Lemma 7.1. Consider the equations

(H AT)(w)(a ) (7.1)

The vector ak is dependent on the rows of A if and only if the vector W is zero in
the solution of (7.1).

Proof. Suppose that ak is dependent on the rows of A. In this case, there must
exist a vector v such that ak = ATv, and w is zero in the solution of (7.1).

Assume that w is zero in the solution of (7.1). It follows that ak = ATv, and ak
is dependent on the rows of A. I

When the algorithm is applied, either one or two constraints leave the working
set. The following sections show how to update the working-set matrix.

7.1. One constraint becomes inactive

Assume that p is given by p = Yoi and let aTx > Oi denote the constraint that leaves
the working set.

Lemma 7.2. Assume that p is computed by deleting one constraint from the work-
ing set. If ak is independent of the rows of A, it is added to A, while ai is maintained
in A as an artificial constraint. If ak is dependent on the rows of A, ak and ai are
exchanged. In either case, the resulting reduced Hessian is positive definite and
working-set matrix has full row rank.

Proof. If ak is independent of the rows of A, the new reduced Hessian remains
positive definite since only one more constraint is added to the working set. Also,
the new working-set matrix has full row rank.

Now assume that ak is dependent on the rows of A. If ak and ai are exchanged,
the rows of the new working set will span the same space as the rows of A. Hence,
the new reduced Hessian is positive definite. Also, the new working-set matrix has
the same number of rows as the old one, and therefore it has full row rank. I

Hence, after having either added ak or exchanged ak and ai, the new reduced
Hessian is positive definite and the new working-set matrix has full row rank.

7.2. Two constraints become inactive

Assume that p is given by p = aiy,,i + ajyj, where ai and aj are both nonzero. Let
ai and aj denote the normals of the constraints which leave the working set.

Lemma 7.3. Assume that ak = Ajv2 + aivi + ajvj. Then it cannot hold that
vi = v1 = 0.



S. Verification of Local Optimality 19

Proof. Assume that ak = Afv 2. Premultiplication by pT yields pTak = 0. But this
could not hold since ak becomes violated when a sufficiently large step along p is
taken. I

Lemma 7.4. Assume that p is computed by making two active constraints inactive.
If ak is independent of the rows of A, it is added to A, while a, and aj are maintained
as artificial constraints. If ak is dependent on the rows of A and Ivil > jvj , ak and
ai are exchanged. If ak is dependent on the rows of A and Ivil < jvj , ak and aj are
exchanged. In each case, the new reduced Hessian is positive definite and the new
working-set matrix has full row rank.

Proof. Assume that ak is independent of the rows of A. The new reduced Hessian
remains positive definite since only one more constraint is added to the working set.
Also, the new working-set matrix has full row rank.

Assume that ak is dependent on the rows of A. Lemma 7.3 implies that at least
one of the scalars vi and v, is nonzero. Hence, by performing the specified exchange,
the rows of the new working set will span the same space as the rows of A. Hence,
the new reduced Hessian will be positive definite. Also, the new working-set matrix
has the same number of rows as the old one, and therefore it has full row rank. I

Hence, after having either added ak or exchanged either ak and ai or ak and ai ,
the new reduced Hessian is positive definite and the working-set rialrix has full row
rank.

8. Verification of Local Optimality

In this section we describe a complete algorithm for checking if a given dead point x
is a local minimizer. In Algorithm 8.1, a direction of negative curvature is found by
making one or two constraints leave the working set at a time. If no such direction
exists, Algorithm 6.1 yields the result that x is a local minimizer.

If constraints corresponding to positive diagonal elements of yTHYR are deleted
in Algorithm 6.1, assumption A2 will no longer hold. In this case, if a direction of
negative curvature is computed, the resulting maximum feasible step could be zero
and there is a danger of cycling.

However, if Algorithm 8.1 terminates, it will provide either a feasible direction
of negative curvature along which a nonzero step may be taken or the information
that x is a local minimizer. As shown in Section 6, the algorithm will terminate
with the information that x is a local minimizer in the special case when the matrix
yTIyR is positive semidefinite.

9. Conclusions

When solving a general quadratic programming problem there may exist certain
dead points at which it is very difficult to verify optimality. We emphasize that this
difficulty is inherent to the problem, and is independent of the solution method.
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Algorithm 8.1. An algorithm checking for local optimality

repeat
Apply Algorithm 6.1;
local-Minirnizer-- Algorithm 6.1 implies that x is a local minimizer;
if (local-minimizer) then

go to exit;
else

ak- constraint that is first violated along p;

O- maxiimun feasible step along p;

Solve ( i I) ( w \); (see Lemma 7.1)
A 0 v 0

indep -- (IHI]] > 0);
nr inactiv ,- number of constraints that become inactive;
if ( nr inactiv-- 1) then

a, - constraint that becomes inactive;
if (indcp) then

Add ak;

else
Exchange ak and ai; (see Lemma 7.2)

end if;
else

ai,a] - constraints that become inactive;
if (indep) then

Add ak;
else

if (I, > vjI) then
Exchange ak and ai; (see Lemma 7.4)

else
Exchange ak and aj;

end if;
end if;

end if;
if (OF > 0) then

X - X + OFP;

localrninimizer false;

go to exit;
end if;

end if;
until too many iterations;

label exit:
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In this paper, the verification of optimality has been discussed within the con-
text of an inertia-controlling method. We have derived a computational method
appropriate for general ICQP methods, that will attempt to determine if a dead
point is a local minimizer. The use of artificial constraints may introduce additional
(lead points. It has been shown that the new procedure does not terminate at such
points, unless they are local minimizers.

However, the verification of optimality in the general case is an NP-hard problem,
so we would not expect to find a procedure capable of solving a general problem
in a reasonable amount of computational effort. In our scheme, there is a potential
danger of cycling, and techniques similar to anti-cycling procedures used in linear
programming are needed to resolve this problem.

Acknowledgement

\Ve would like to thank Richard Cottle for bibliographical assistance and helpful
discussions on the properties of copositive matrices.

References

[Bor62] J. M. Borwein. Necessary and sufficient conditions for quadratic minimality. Numer.
Funct. Anal. and Optimiz., 5, 127-140, 1982.

[CH L7O] R. W. Cottle, G. J. Habetler, and C. E. Lemke. On classes of copositive matrices.
Linear Algebra and its Applications, 3, 295-310, 1970.

[Con8O] L. B. Contesse. Une caract~risation complkte des minima locaux en programmation
quadiatique. Numerische Mathematik, 34, 315-332, 1980.

[Fle7I] R. Fletcher. A general quadratic programming algorithm. J. Institute of Mathematics

and its Applications, 7, 76-91, 1971.

G ;MSW8.4] P. E. Gill, W. Murray, M. A. Saunders, and M. 11. Wright. User's guide for
SOL/QPSOL (Version 3.2). Report SOL 84-6, Department of Operations Research,
Stanford University, 1984.

[GMSW88] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Inertia-controlling methods
for quadratic programming. Report SOL 88-3, Department of Operations Research,
Stanford University, 1988.

[(;oti85) N. 1. M. Gould. On practical conditions for the existence and uniqueness of solutions
to the general equality quadratic programming problem. Mathematical Programming,
32, 90-99, 1985.

[Gou86) N. 1. M. Gould. An algorithm for large scale quadratic programming. Technical Re-
port CSS 219, Computer Science and Systems Divisi-n, AERE Harwell, Oxford, Eng-

land, 1986.

[Maj71] A. Majthay. Optimality conditions for quadratic programming. Mathematical Pro-
gramming, 1, 359-365, 1971.

[Man8O] 0. L. Mangasarian. Locally unique solutions of quadratic programs, linear and non-
linear complementarity problems. Mathematical Programming, 19, 200-212, 1980.

[M K87] K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and nonlinear
programming. Mathematical Programming, 39, 117-129, 1987.

[Per72] F. J. Pereira. On characterizations of copositive matrices. PhD thesis, Department of
Operations Research, Stanford University, 1972.

[PS88] P. M. Pardalos and G. Schnitger. Checking local optimality in constrained quadratic
programming is NP-hard. Operations Research Letters, 7, 33-35, 1988.



UNCLASSI FIED
SECURITY CLAW PICATION OF T041S PAGE (1110 OaD _____________________

REPORT DOCUMENT ATION PAGE EAD1X~R0~ COW

1. 111vM MUGR6V CCISEON ISO: I "CIP I1~ CATALOG NMBER

SQL 89-11 r__________I____

& TOT LE (d &6dde)S TYPE OF REPORT 6 PERIO COVERED

On the Identification of Local Minimizers in Technical Report
Inertia-Controlling Methods for Quadratic S.PROMN RG EOTMma
Programming

7. AUTHOR(@) 11. CONTRACT OR GRANT MumeISR(.)

Anders L. Forsgren, Philip E. Gill and N00014-87-K-0142
Walter Murray

S. PERFORMING ORGANIZATION MAKE ANO ADDRESS WG. PGRAM ELEMENT. PROJECT. TASK

Department of Operations Research - SOL liiaWOKUINMBR
Stanford University 11M
Stanford, CA 94305-4022 _______________

11. CONTROLLING OFFICE NAME AND ADDRESS IL. REPMODATE

Office of Naval Research - Dept. of the Navy July 1989
800 N. Quincy Street I&. MUNGER or PAGS

Arlington, VA 22217 21 oages
ISL SECURITY CLASS. (of Ode repl)

UNCLASSI F!ED

16. DI5TRIOUT11ON STATEMENT (of INS AWNQ

This document has been approved for public release and sale;
its distribution is unlimited.

17. CHITYRIUTION STATEMENT (of O. 460 60INI 61a~ ft~ .It 400MO &I EW

10. SUPPLEMENTARY NOTES

is. KEY WORDS (CNIS0 - #"e &I DiUb' p le m Noanbeu3

Quadratic programming, local minimizer, NP-hardness.

22 ABSTRACT (Cnw es .ywin aid .sesW an #d=N bp Week j

(see reverse side)

DO FOR 1473 EmIoN OFP mo NOV is oUsOLETE

8ECURITY CLASSIICATION OF TNI18 PAGS 7WWe 00-0 U3e*



maCUNITY CLAFIrCATION OF THIS PAGIKWb DM& Stle,

SOL 89-11: On the Identification of Local Minimizers in Inertia-Controlling Methods for
Quadratic Programming, Anders L. Forsgren, Philip E. Gill and Walter Murray
(July 1989, 21 pp.).

The verification of a local minimizer of a general (ie, nonconvex) quadratic program is in general

an NP-hard problem The difficulty concerns the optimality of certain points (which we call dead points)

at which the first-order necessary conditions for optimality are satisfied, but strict complementarity does
not hold

One important call of methods for solving general quadratic programming problems are called

zntrrtza-controllzng quadratzc programymnng (ICQP) methods. We derive a computational scheme for

proceeding at a dead point that is appropriate for a general ICQP method

SUCUNIIY CL-AIPlrCAV~OV 'u*** PAOl[t'll. 'en 3Mmd~l


